Определение напряжений в массивах грунтов

Напряжения в массивах грунтов, служащих основанием, средой или материалом для сооружения, возникают под воздействием внешних нагрузок и собственного веса грунта. Знание напряжений необходимо для расчетов деформаций грунтов, обусловливающих осадки и перемещения сооружений, для оценки прочности, устойчивости грунтов и давления на ограждения. Кроме того, для расчетов конструкций фундаментов сооружений необходимо знать реактивные напряжения, возникающие в контакте между фундаментом и основанием.

Распределение напряжений в грунтовой толще зависит от многих факторов. Прежде всего к ним относятся характер и режим нагружения массива, инженерно-геологические и гидрогеологические особенности площадки строительства, состав и физико-механические свойства грунтов. Формирование напряжений в грунтовой толще происходит не мгновенно при приложении нагрузки, а может развиваться весьма длительное время. Это связано со скоростью протекания деформаций и особенно сильно проявляется в пылевато-глинистых грунтах, где процессы фильтрационной консолидации и ползучести развиваются очень медленно.

Под действием собственного веса в массивах грунтов всегда формируется начальное напряженное состояние, иногда осложняемое различными геодинамическими процессами. Поэтому напряжения, возникающие в массивах грунтов от действия сооружения, накладываются на уже имеющиеся в нем собственные напряжения.

Это приводит к формированию сложного поля напряжений в грунтовой толще. Таким образом, определение напряжений в массиве грунтов представляет собой сложную задачу. Во многих случаях при инженерных расчетах решение этой задачи основывается на ряде упрощающих допущений, которые были рассмотрены.

Напомним, что к ним относятся предположения об однородности строения массива, изотропии механических свойств грунтов и их линейной деформируемости. Это позволяет для расчетов напряжений в грунтах использовать хорошо разработанный аппарат линейной теории упругости.

Определенное с помощью теории упругости поле напряжений соответствует конечному, стабилизированному, состоянию грунтов, т. е. тому моменту времени, когда все деформации, вызванные приложением нагрузок, уже завершились. В особых случаях, при проектировании наиболее ответственных -сооружений, а также при строительстве в сложных грунтовых условиях, применяются и более сложные модели, позволяющие определять изменение поля напряжений в процессе деформирования грунтов.

Одним из важнейших следствий применения теории упругости к расчетам напряжений в грунтах является постулирование принципа суперпозиции, т- е. независимости действия сил. Это позволяет рассчитывать напряжения в массиве от действия собственного веса грунта и нагрузок, вызываемых сооружением, независимо друг от друга и, суммируя полученный результат, определять общее поле напряжений. Основной целью полевых испытаний следует считать повышение информативности инженерно-геологических изысканий и надежности определения прочности, деформативных и фильтрационных свойств грунтов в массивах, включая и массивы техногенного происхождения(земляные сооружения, подсыпки при планировках и заменах, отвалы и др.).

В число специфических задач испытаний входят:

- изучение состояния и свойств грунтов, монолитные образцы и керны которых для лабораторных испытаний отобрать невозможно(крупнообломочных грунтов, водоносных и сыпучих песков, глинистых грунтов агрегатного сложения, некоторых илов, подверженным тиксотропным превращениям и при малейших воздействиях разжижающихся, и др.);

- учет масштабного эффекта, являющегося следствием макронеоднородности массива при относительной однородности состава, сложения, состояния и свойств грунта в монолитном образце (керне);

- непосредственное определение максимальной и структурной прочности грунтов в массиве;

- моделирование в массиве напряжений, возникающих при техногенных воздействиях на грунты-основания и среду проектируемых сооружений и зданий (бытовом плюс проектном давлениях, разгрузке массива вскрытием в нем строительных выработок, подтоплении и дренаже и др.);

- моделирование поведения грунтов в замачиваемых, оттаивающих, промораживаемых, набухающих, проседающих массивах, при явлениях тиксотропии и др.;

- моделирование взаимодействия грунтов и свай в массиве.

В гидроэнергетическом и некоторых других видах строительства в полевых испытаниях устанавливают также естественное напряженное состояние грунта в массиве на заданной глубине (бытовое и поровое давления, диагенетические и постгенетические напряжения и др.).

Транспорт
На территории края существует довольно плотная транспортная сеть, включающая все основные виды транспорта, такие как: железнодорожный, автомобильный, авиационный. Эксплуатируемая длина железнодорожных путей общего пользования - 928 км, протяженность автомобильных дорог с твердым покрытием (включая ведомств ...

Расчет колонны
Определение продольных сил от расчетных нагрузок. Грузовая площадь колонны 3,78 х 3,195 = 12,08 м2. Подсчет нагрузок на грузовую площадь колонны приведен в таблице 2.4. Таблица 2.4 Постоянная: собственный вес плиты днища и покрытия 7,57 х 12,08 = 91,45 кН собственный вес колонны сечением 0,4х0,4 м, 0,4х ...

Расчет состава сырьевой смеси
Требуется подобрать Арболит класса В2,5 плотностью не более 700 кг/мі для блоков наружных стен. Расчет сырьевых материалов выполнен в соответствии с СН 549–82. Ориентировочный расход цемента М400 на 1 мі арболита при заполнителе – дроблёнке из отходов деревообработки хвойных пород составляет 360 кг/мі. Расх ...

© 2013-2022 Copyright www.imrankhan.site