Рис. 2.8 Схема прессиометра
1 – зонд; 2 – обсадная труба; 3 – измерительная аппаратура.
И с п ы т а н и я г р у н т а н а с д в и г имеют особое значение для мест, на которых проектируется строительство сооружений, обладающих в определенной степени тенденцией к сдвигу, например мостов, плотин. Однако испытания на сдвиг могут производиться просто для получения более полной прочностной характеристики неоднородных по составу грунтов, испытания которых в лабораторных условиях не дают удовлетворительных результатов (содержание неоднородных включений).
Испытание пород на сдвиг может вестись в шурфах и скважинах. Существует четыре метода испытаний в шурфах: раздавливание четырехгранной призмы или цилиндра грунта вертикальной нагрузкой, сдвиг целика по заранее намечаемой горизонтальной плоскости, выпирание треугольной призмы в сторону, обрушение треугольной призмы вниз (рис. 2.9, а, б, в). Зная разрушающее усилие и площадь поверхности сдвига, рассчитывают прочность грунта.
Испытания грунта на сдвиг могут вестись и в скважинах лопастными приборами – крыльчатками (рис. 2.10). Для этого двух- или четырех-лопастная крыльчатка 1, закрепленная на штанге 2, вдавливается в забой скважины ниже обреза обсадных труб 3. Вверху вращением сердечника штанг распорными пластинами крыльчатки создается боковое давление на грунт и затем крыльчатка поворачивается.
Этот метод испытания основан на измерении предельного крутящего момента, при котором начинается сдвиг (вращение) лопастей крыльчатки. Сопротивление же сдвигу зависит от свойства грунта и размеров лопастей крыльчатки. Измерив сопротивление сдвигу при разных давлениях к поверхности среза и зная размеры крыльчатки, можно вычислить показатели прочностных свойств
грунтов.
Такие испытания для одного слоя породы повторяют в одной скважине несколько раз, постепенно углубляя скважину.
Испытания грунта лопастными приборами можно вести до глубины 15–20 м. Лопастные приборы позволяют косвенно определить и модуль деформации грунта.
Д и н а м и ч е с к о е з о н д и р о в а н и е заключается в определении сопротивления которое оказывает грунт забивке в него штанги с навинченным на нее специальным стальным наконечником – зондом в виде конуса, имеющего диаметр до 74 мм и угол при вершине 60°. Забивка зонда производится молотом определенного веса, свободно падающим с постоянной высоты; при этом фиксируется число ударов, необходимое для погружения зонда на определенную глубину (10 см), или глубина погружения зонда после 10 ударов.
Рис. 2.9. Схемы испытания целиков на сдвиг:
а – разрушение цилиндрического целика путем сдвига в обойме; б – выпирание трехгранного целика в горизонтальном направлении; в-обрушение трехгранного целика; 1 – целик; 2 – домкрат; 3 – упорные балки; 4 – каретка для перемещения головки домкрата.
|
С т а т и ч е с к о е з о н д и р о в а н и е отличается от динамического тем, что погружение зонда осуществляется не забивкой, а вдавливанием при помощи гидравлического домкрата. Развиваемое домкратом усилие измеряется манометром. Зонд также снабжен датчиком, позволяющим в любой момент определять величину сопротивления грунта внедрению конуса.
При помощи статического зондирования можно вести изучение мягких грунтов на глубину 15–25 м со скоростью 0,5–1 м/мин. Итоговым материалом статического зондирования является график, на котором показывают две кривые: кривую сопротивления грунта под зондом и кривую сопротивления трения.
Расчет потребности в сжатом воздухе, выбор компрессора и определение сечения
разводящих трубопроводов
Для установления максимального расхода сжатого воздуха обеспечения работы пневматических машин составляется график табл.
Суммарная потребность в сжатом воздухе:
Qсв = 16,45 х 1,4 = 23,03 м3/мин.
Расчетная мощность компрессорной установки
Qкомп = 23,03 х (100 + 10 + 30 + 30 + 10) / 100 = 41,45 м3/мин.
Д ...
График потребности в
основных строительных машинах и механизмах
При построении графика потребности в строительных машинах необходимо предусмотреть использование вспомогательных строительных машин и механизмов на отдельных работах, по которым в технологической модели не предусмотрены затраты машинного времени. При этом количество подъемников принимается из расчета по 1 м ...
Теплотехнический расчёт ограждений
1. Теплотехнический расчёт стенового ограждения.
г. Архангельск (влажная зона); условие эксплуатации – Б
·
·
· сут.
·
·
·
·
·
I. ;
II. ;
Находим :
1. Железобетонный слой ()
;
м;
2. Теплоизоляция (пенобетон, )
;
м;
3. Железобетонный слой ()
;
м;
III. ;
;
0,115 + 0,034 + 0, ...